This paper examines the differences in ordinal rankings obtained from a pairwise comparison matrix using the eigenvalue method and the geometric mean method. First, we introduce several propositions on the (dis)similarity of both rankings concerning the matrix size and its inconsistency expressed by the Koczkodaj's inconsistency index. Further on, we examine the relationship between differences in both rankings and Kendall's rank correlation coefficient $\tau$ and Spearman's rank coefficient $\rho$. Apart from theoretical results, intuitive numerical examples and Monte Carlo simulations are also provided.
翻译:本文件审查了使用电子价值法和几何平均法从对称比较矩阵中获得的正数等级差异。首先,我们提出了关于两种等级在矩阵大小及其不一致性方面差异(不同)的若干主张,如Koczkodaj的不一致指数所表示。此外,我们还审查了等级差异与Kendall的等级相关系数($\tau$)和Spearman的等级系数($\rho$)之间的关系。除了理论结果外,还提供了直观的数字实例和蒙特卡洛模拟。