This paper introduces a new algorithm for numerically computing equilibrium (i.e. stationary) distributions for Markov chains and Markov jump processes with either a very large finite state space or a countably infinite state space. The algorithm is based on a ratio representation for equilibrium expectations in which the numerator and denominator correspond to expectations defined over paths that start and end within a given return set $K$. When $K$ is a singleton, this representation is a well-known consequence of regenerative process theory. For computational tractability, we ignore contributions to the path expectations corresponding to excursions out of a given truncation set $A$. This yields a truncation algorithm that is provably convergent as $A$ gets large. Furthermore, in the presence of a suitable Lyapunov function, we can bound the path expectations, thereby providing computable and convergent error bounds for our numerical procedure. Our paper also provides a computational comparison with two other truncation methods that come with computable error bounds. The results are in alignment with the observation that our bounds have associated computational complexities that typically scale better as the truncation set gets bigger.
翻译:本文为 Markov 链条和 Markov 跳跃过程引入了一种新的计算平衡( 固定) 的数值算法分布, 包括极小的有限状态空间或可计算无限的状态空间。 该算法基于均衡期望的比例表示, 分子和分母与在给定的返回框架内开始和结束的路径的预期相符 $K$ 。 当 $K 是一个单吨时, 这个表示是再生过程理论的一个众所周知的结果 。 对于可计算性, 我们忽略了对路径期望的贡献, 对应于从给定的逃逸中流出的时间设定 $A$。 这产生一种可被可察觉的递解算法, 随着$A$的增加而逐渐趋同。 此外, 在合适的 Lyapunov 函数存在的情况下, 我们可以将路径期望捆绑起来, 从而为我们的数字程序提供可比较和趋同的错误界限。 我们的纸张还提供了一种计算比较方法, 与另外两种有可计算错误约束的 trunc 方法 。 结果与这样的观察结果是一致的, 我们的绑定的计算复杂程度通常会比较。