There are limited works showing the efficacy of unsupervised Out-of-Distribution (OOD) methods on complex medical data. Here, we present preliminary findings of our unsupervised OOD detection algorithm, SimCLR-LOF, as well as a recent state of the art approach (SSD), applied on medical images. SimCLR-LOF learns semantically meaningful features using SimCLR and uses LOF for scoring if a test sample is OOD. We evaluated on the multi-source International Skin Imaging Collaboration (ISIC) 2019 dataset, and show results that are competitive with SSD as well as with recent supervised approaches applied on the same data.
翻译:显示未经监督的分发方法在复杂医疗数据方面的功效的作品有限。 在这里,我们介绍了未经监督的 OOD 检测算法(SimCLR-LOF)的初步结果,以及医疗图像应用的最新先进方法(SSD)。 SimCLR-LOF 学会了使用SimCLR(SISD)具有内在意义的特征,如果测试样品是OOD(OOD),则使用LOF(LOF)来评分。我们用多来源国际皮肤成像协作(ISIC) (ISIC) (ISIC) (ISIC) 2019) 数据集进行了评估,并展示了与SD(ISD) 以及最近对同一数据应用的监督方法具有竞争力的结果。