There is inadequate attention to using mobile Augmented Reality (AR) in fitness, despite mobile AR being easy to use, requiring no extra cost, and can be a powerful learning tool. In this work, we present a mobile AR application that can help users learn exercises with a virtual personal trainer. We conduct a user study with 10 participants to investigate the learning quality of the ARFit (i.e., the proposed mobile AR application) in comparison to traditional methods such as Image-based learning and Video-based learning. Our results indicate that participants have a higher learning quality of exercise with mobile AR than (1) Image-based learning among all exercises selected and (2) video-based learning with exercise that requires greater spatial knowledge, with the performance evaluated by a qualified personal trainer. In addition, ARFit has an excellent rating in usability, is deemed to be highly acceptable, and is the preferred exercise learning method by most participants (N=9)


翻译:尽管流动AR很容易使用,不需要额外的成本,而且可以成为一个强大的学习工具。在这项工作中,我们提出了一个移动AR应用软件,可以帮助用户与虚拟个人教练员一起学习练习。我们进行了一项用户研究,有10名参与者参与,以调查ARFit的学习质量(即拟议的移动AR应用软件),与图像学习和视频学习等传统方法相比,对移动AR学习(即移动AR应用软件)的学习质量没有给予足够的重视。我们的结果表明,参与者使用移动AR的学习质量高于:(1) 在所有选定的练习中,基于图像的学习;(2) 视频学习,需要更多的空间知识,由合格的个人教练员对业绩进行评价。此外,ARFit的可使用性评级很高,被认为是高度可以接受的,也是大多数参与者偏爱的练习学习方法(N=9)。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年10月19日
Arxiv
0+阅读 · 2022年10月19日
Arxiv
16+阅读 · 2021年3月2日
Arxiv
12+阅读 · 2020年8月3日
Arxiv
38+阅读 · 2020年3月10日
Image Segmentation Using Deep Learning: A Survey
Arxiv
44+阅读 · 2020年1月15日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关论文
Arxiv
0+阅读 · 2022年10月19日
Arxiv
0+阅读 · 2022年10月19日
Arxiv
16+阅读 · 2021年3月2日
Arxiv
12+阅读 · 2020年8月3日
Arxiv
38+阅读 · 2020年3月10日
Image Segmentation Using Deep Learning: A Survey
Arxiv
44+阅读 · 2020年1月15日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员