The diffusive behaviour of simple random-walk proposals of many Markov Chain Monte Carlo (MCMC) algorithms results in slow exploration of the state space making inefficient the convergence to a target distribution. Hamiltonian/Hybrid Monte Carlo (HMC), by introducing fictious momentum variables, adopts Hamiltonian dynamics, rather than a probability distribution, to propose future states in the Markov chain. Splitting schemes are numerical integrators for Hamiltonian problems that may advantageously replace the St\"ormer-Verlet method within HMC methodology. In this paper a family of stable methods for univariate and multivariate Gaussian distributions, taken as guide-problems for more realistic situations, is proposed. Differently from similar methods proposed in the recent literature, the considered schemes are featured by null expectation of the random variable representing the energy error. The effectiveness of the novel procedures is shown for bivariate and multivariate test cases taken from the literature.


翻译:许多马克夫连锁店蒙特卡洛(Markov Chain-Monte Carlo(MCMC))算法的简单随机随机建议令人费解的行为导致国家空间探索缓慢,使得与目标分布的趋同效率低。汉密尔顿/Hybrid Monte Carlo(HMC)通过引入令人费解的势头变量,采用了汉密尔顿动态,而不是概率分布,以在Markov链中提出未来状态。分割计划是汉密尔顿式问题的数字集成器,在HMC方法中可以有利地取代St\"ormer-Verlet方法。本文提出了一套稳定的方法,用于单向和多变制高斯分布,作为更现实情况下的指南问题。与最近的文献中提议的类似方法不同,所考虑的办法的特点是对代表能量错误的随机变量的完全期望。新程序的有效性用于从文献中取出的双变和多变式测试案例。

0
下载
关闭预览

相关内容

【KDD2021】图神经网络,NUS- Xavier Bresson教授
专知会员服务
63+阅读 · 2021年8月20日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【DeepMind】强化学习教程,83页ppt
专知会员服务
153+阅读 · 2020年8月7日
一份简单《图神经网络》教程,28页ppt
专知会员服务
124+阅读 · 2020年8月2日
【经典书】机器学习高斯过程,266页pdf
专知会员服务
195+阅读 · 2020年5月2日
因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
深度强化学习策略梯度教程,53页ppt
专知会员服务
179+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
已删除
将门创投
5+阅读 · 2019年5月5日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
蒙特卡罗方法(Monte Carlo Methods)
数据挖掘入门与实战
6+阅读 · 2018年4月22日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年9月8日
Arxiv
3+阅读 · 2019年10月31日
VIP会员
相关VIP内容
【KDD2021】图神经网络,NUS- Xavier Bresson教授
专知会员服务
63+阅读 · 2021年8月20日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【DeepMind】强化学习教程,83页ppt
专知会员服务
153+阅读 · 2020年8月7日
一份简单《图神经网络》教程,28页ppt
专知会员服务
124+阅读 · 2020年8月2日
【经典书】机器学习高斯过程,266页pdf
专知会员服务
195+阅读 · 2020年5月2日
因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
深度强化学习策略梯度教程,53页ppt
专知会员服务
179+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
已删除
将门创投
5+阅读 · 2019年5月5日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
蒙特卡罗方法(Monte Carlo Methods)
数据挖掘入门与实战
6+阅读 · 2018年4月22日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员