We propose a novel Synergistic Attention Network (SA-Net) to address the light field salient object detection by establishing a synergistic effect between multi-modal features with advanced attention mechanisms. Our SA-Net exploits the rich information of focal stacks via 3D convolutional neural networks, decodes the high-level features of multi-modal light field data with two cascaded synergistic attention modules, and predicts the saliency map using an effective feature fusion module in a progressive manner. Extensive experiments on three widely-used benchmark datasets show that our SA-Net outperforms 28 state-of-the-art models, sufficiently demonstrating its effectiveness and superiority. Our code will be made publicly available.
翻译:我们建议建立一个新颖的协同关注网络(SA-Net),通过在具有高级关注机制的多模式特征之间建立协同效应,解决光外显眼物体探测问题。 我们的SA-Net通过3D进化神经网络利用核心堆叠的丰富信息,用两个串联的协同关注模块解码多模式光场数据的高级别特征,并以渐进的方式预测使用有效特征聚合模块的显眼地图。 对三个广泛使用的基准数据集的广泛实验表明,我们的SA-Net优于28个最先进的模型,充分证明了其有效性和优越性。我们的代码将被公诸于众。