We consider the following problem: given a program, find tight asymptotic bounds on the values of some variables at the end of the computation (or at any given program point) in terms of its input values. We focus on the case of polynomially-bounded variables, and on a weak programming language for which we have recently shown that tight bounds for polynomially-bounded variables are computable. These bounds are sets of multivariate polynomials. While their computability has been settled, the complexity of this program-analysis problem remained open. In this paper, we show the problem to be PSPACE-complete. The main contribution is a new, space-efficient analysis algorithm. This algorithm is obtained in a few steps. First, we develop an algorithm for univariate bounds, a sub-problem which is already PSPACE-hard. Then, a decision procedure for multivariate bounds is achieved by reducing this problem to the univariate case; this reduction is orthogonal to the solution of the univariate problem and uses observations on the geometry of a set of vectors that represent multivariate bounds. Finally, we transform the univariate-bound algorithm to produce multivariate bounds.


翻译:我们考虑以下问题: 给一个程序, 在计算( 或任何给定程序点) 的输入值的结尾处, 找到某些变量值的严格零点界限 。 我们集中关注多球基变量的案例, 以及我们最近显示多球基变量的严格界限是可比较的薄弱编程语言 。 这些界限是多变量多变量组合的组合。 虽然它们的可比较性已经解决, 程序分析问题的复杂性仍然未解决 。 在本文中, 我们显示问题为 PSPACE 已完成 。 主要贡献是一个新的、 空间效率分析算法 。 这个算法是在几步中获得的。 首先, 我们为单球基变量组合开发一种算法, 一个小问题已经很难解决 。 然后, 通过将这个问题降低到 单数组合, 程序的复杂性仍然未解析 。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
52+阅读 · 2020年9月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年11月23日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员