We present a new data structure to approximate accurately and efficiently a polynomial $f$ of degree $d$ given as a list of coefficients. Its properties allow us to improve the state-of-the-art bounds on the bit complexity for the problems of root isolation and approximate multipoint evaluation. This data structure also leads to a new geometric criterion to detect ill-conditioned polynomials, implying notably that the standard condition number of the zeros of a polynomial is at least exponential in the number of roots of modulus less than $1/2$ or greater than $2$.Given a polynomial $f$ of degree $d$ with $\|f\|_1 \leq 2^\tau$ for $\tau \geq 1$, isolating all its complex roots or evaluating it at $d$ points can be done with a quasi-linear number of arithmetic operations. However, considering the bit complexity, the state-of-the-art algorithms require at least $d^{3/2}$ bit operations even for well-conditioned polynomials and when the accuracy required is low. Given a positive integer $m$, we can compute our new data structure and evaluate $f$ at $d$ points in the unit disk with an absolute error less than $2^{-m}$ in $\widetilde O(d(\tau+m))$ bit operations, where $\widetilde O(\cdot)$ means that we omit logarithmic factors. We also show that if $\kappa$ is the absolute condition number of the zeros of $f$, then we can isolate all the roots of $f$ in $\widetilde O(d(\tau + \log \kappa))$ bit operations. Moreover, our algorithms are simple to implement. For approximating the complex roots of a polynomial, we implemented a small prototype in Python/NumPy that is an order of magnitude faster than the state-of-the-art solver MPSolve for high degree polynomials with random coefficients.


翻译:我们提出了一个新的数据结构, 以准确和高效的方式接近一个多角度的离子值( 以美元计度) 。 它的属性允许我们改进对根隔离和多点评估问题的比分复杂性的状态值。 这个数据结构还导致一个新的几何标准, 以检测条件差的多语种, 特别是多语种的零的标准条件值至少是微调根数( 以美元计值小于1/2美元或超过2美元 。 以美元计值, 以美元计值, 以美元计值, 以美元计值, 以美元计值, 以美元计值, 以美元计值, 以美元计值, 以美元计值, 以美元计值, 以美元计价, 以美元计值, 以美元计值, 以美元计值表示的绝对值值值值值。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2021年8月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【大规模数据系统,552页ppt】Large-scale Data Systems
专知会员服务
60+阅读 · 2019年12月21日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
4+阅读 · 2018年1月19日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
4+阅读 · 2018年1月19日
Top
微信扫码咨询专知VIP会员