Tensors, which provide a powerful and flexible model for representing multi-attribute data and multi-way interactions, play an indispensable role in modern data science across various fields in science and engineering. A fundamental task is to faithfully recover the tensor from highly incomplete measurements in a statistically and computationally efficient manner. Harnessing the low-rank structure of tensors in the Tucker decomposition, this paper develops a scaled gradient descent (ScaledGD) algorithm to directly recover the tensor factors with tailored spectral initializations, and shows that it provably converges at a linear rate independent of the condition number of the ground truth tensor for two canonical problems -- tensor completion and tensor regression -- as soon as the sample size is above the order of $n^{3/2}$ ignoring other parameter dependencies, where $n$ is the dimension of the tensor. This leads to an extremely scalable approach to low-rank tensor estimation compared with prior art, which suffers from at least one of the following drawbacks: extreme sensitivity to ill-conditioning, high per-iteration costs in terms of memory and computation, or poor sample complexity guarantees. To the best of our knowledge, ScaledGD is the first algorithm that achieves near-optimal statistical and computational complexities simultaneously for low-rank tensor completion with the Tucker decomposition. Our algorithm highlights the power of appropriate preconditioning in accelerating nonconvex statistical estimation, where the iteration-varying preconditioners promote desirable invariance properties of the trajectory with respect to the underlying symmetry in low-rank tensor factorization.


翻译:塔克分解过程中的高压结构为代表多归性数据和多路互动提供了一个强大和灵活的模型,在科学和工程领域各个领域的现代数据科学中发挥着不可或缺的作用。一项基本任务是以统计和计算效率的方式忠实地从高度不完整的测量中恢复高压。利用塔克分解中低调结构的塔克分解,本文件开发了一种缩放梯度下限算法,以通过定制的光谱初始化直接恢复微调系数,并表明它以线性速度趋同,而独立于地面真理回声器的条件数,对于两个卡通性问题 -- -- 高超度完成和回落 -- -- 而言,这是一个不可或缺的任务。只要样本数量超过 $N+3/2美元左右,就忽略其他参数依赖性关系,而美元是变压的层面。这导致对低压估计采取极为可缩缩缩缩的方法,因为至少存在以下一种反调:对最佳调的估算、高比值的推算成本高,而我们最接近的快速递增度在统计前期的递增度上,在统计推算中,我们最接近的递增度的压的递增度上将达到最接近尾压的压的压的压的递增压性推算法,我们最接近于最接近的压的压的压的压的压压压压的压的压值,即:在接近于我们的压压压压的压压压前的递算中,即:在接近于我们的压的压的压的压的压压压压压压压,即:在接近于我们的压的压压压压压压压压压压的压的压压压前程程程程程程程程程程程程程中,即:在接近于我们的压中,在我们的压中,在接近和低的推算算算算入中,在我们的压的推算中,在我们的算中,在接近和低的推算中,在接近和低的推算入中,在我们的压后期的推算中,在接近和低的推算算算算算入中,我们的推算中,我们的推算的推算的推算的推算入中,即我们的压后的推算入中,在接近的推算入中,我们的推算入的

0
下载
关闭预览

相关内容

【硬核书】矩阵代数基础,248页pdf
专知会员服务
85+阅读 · 2021年12月9日
专知会员服务
25+阅读 · 2021年4月2日
【ACML2020】张量网络机器学习:最近的进展和前沿,109页ppt
专知会员服务
54+阅读 · 2020年12月15日
专知会员服务
50+阅读 · 2020年12月14日
【新书】贝叶斯网络进展与新应用,附全书下载
专知会员服务
120+阅读 · 2019年12月9日
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
计算机类 | PLDI 2020等国际会议信息6条
Call4Papers
3+阅读 · 2019年7月8日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
计算机类 | SIGMETRICS 2019等国际会议信息7条
Call4Papers
9+阅读 · 2018年10月23日
已删除
将门创投
3+阅读 · 2018年6月20日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
0+阅读 · 2022年1月25日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关VIP内容
相关资讯
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
计算机类 | PLDI 2020等国际会议信息6条
Call4Papers
3+阅读 · 2019年7月8日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
计算机类 | SIGMETRICS 2019等国际会议信息7条
Call4Papers
9+阅读 · 2018年10月23日
已删除
将门创投
3+阅读 · 2018年6月20日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员