A learning method is self-certified if it uses all available data to simultaneously learn a predictor and certify its quality with a tight statistical certificate that is valid on unseen data. Recent work has shown that neural network models trained by optimising PAC-Bayes bounds lead not only to accurate predictors, but also to tight risk certificates, bearing promise towards achieving self-certified learning. In this context, learning and certification strategies based on PAC-Bayes bounds are especially attractive due to their ability to leverage all data to learn a posterior and simultaneously certify its risk with a tight numerical certificate. In this paper, we assess the progress towards self-certification in probabilistic neural networks learnt by PAC-Bayes inspired objectives. We empirically compare (on 4 classification datasets) classical test set bounds for deterministic predictors and a PAC-Bayes bound for randomised self-certified predictors. We first show that both of these generalisation bounds are not too far from out-of-sample test set errors. We then show that in data starvation regimes, holding out data for the test set bounds adversely affects generalisation performance, while self-certified strategies based on PAC-Bayes bounds do not suffer from this drawback, proving that they might be a suitable choice for the small data regime. We also find that probabilistic neural networks learnt by PAC-Bayes inspired objectives lead to certificates that can be surprisingly competitive with commonly used test set bounds.


翻译:如果使用所有可用数据同时学习预测器,并用对不可见数据有效的严格统计证书核证其质量,一种学习方法就是一种自我认证的方法。最近的工作表明,通过优化PAC-Bayes边框来优化PAC-Bayes边框培训的神经网络模型不仅导致准确的预测器,而且会导致严格的风险证书,从而有可能实现自我认证的学习。在这方面,基于PAC-Bayes边框的学习和认证战略特别具有吸引力,因为它们能够利用所有数据来学习后方数据,同时以紧凑的数字证书来验证其风险。在本文中,我们评估PAC-Bayes启发的目标所学的概率性神经网络在自我认证方面取得的进展。我们通过实验性比较(在4个分类数据集上)确定确定确定型预测器的古典测试框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框架,同时,我们通过测试BBBBBBBBBBBRBRBRBRBRBBBRBRBRBBBBBBBRBRBRBRBRBRBRBRBRBRBBBRBRBRBRBRBRBRBRBRBRBRSI, 。

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
专知会员服务
99+阅读 · 2021年3月19日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
50+阅读 · 2021年1月20日
专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Arxiv
0+阅读 · 2022年1月26日
Arxiv
0+阅读 · 2022年1月26日
Arxiv
7+阅读 · 2021年5月13日
Optimization for deep learning: theory and algorithms
Arxiv
105+阅读 · 2019年12月19日
Arxiv
19+阅读 · 2018年6月27日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Top
微信扫码咨询专知VIP会员