We explore various Bayesian approaches to estimate partial Gaussian graphical models. Our hierarchical structures enable to deal with single-output as well as multiple-output linear regressions, in small or high dimension, enforcing either no sparsity, sparsity, group sparsity or even sparse-group sparsity for a bi-level selection in the direct links between predictors and responses, thanks to spike-and-slab priors corresponding to each setting. Adaptative and global shrinkages are also incorporated in the Bayesian modeling of the direct links. Gibbs samplers are developed and a simulation study shows the efficiency of our models which regularly give better results than the usual Lasso-type procedures, especially in terms of support recovery. To conclude, a real dataset is investigated.


翻译:我们探索了各种贝叶斯式的方法来估计部分高斯图形模型。我们的等级结构能够处理单输出和多输出线性回归,无论是小维还是高维,在预测器和响应器之间的直接联系中,通过每种环境对应的峰值和悬浮前缀,我们不执行宽度、宽度、群体宽度甚至稀薄群体宽度等双层选择。适应性和全球缩水也被纳入了贝叶斯式直接链接模型中。Gibbs取样员得到了开发,模拟研究表明了我们的模型的效率,这些模型定期产生比通常的拉斯索型程序更好的结果,特别是在支持恢复方面。最后,对真实的数据集进行了调查。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
62+阅读 · 2020年2月17日
【新书】贝叶斯网络进展与新应用,附全书下载
专知会员服务
121+阅读 · 2019年12月9日
已删除
将门创投
14+阅读 · 2019年5月29日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关资讯
已删除
将门创投
14+阅读 · 2019年5月29日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员