Fetal standard scan plane detection during 2-D mid-pregnancy examinations is a highly complex task, which requires extensive medical knowledge and years of training. Although deep neural networks (DNN) can assist inexperienced operators in these tasks, their lack of transparency and interpretability limit their application. Despite some researchers have been committed to visualizing the decision process of DNN, most of them only focus on the pixel-level features and do not take into account the medical prior knowledge. In this work, we propose an interpretable framework based on key medical concepts, which provides explanations from the perspective of clinicians' cognition. Moreover, we utilize a concept-based graph convolutional neural(GCN) network to construct the relationships between key medical concepts. Extensive experimental analysis on a private dataset has shown that the proposed method provides easy-to-understand insights about reasoning results for clinicians.


翻译:2-D中期孕检期间的胎儿标准扫描面检测是一项高度复杂的任务,需要广泛的医学知识和多年的培训。虽然深度神经网络(DNN)可以辅助经验不足的操作者进行这些任务,但它们缺乏透明度和解释性限制了它们的应用。尽管一些研究人员致力于可视化DNN的决策过程,但他们大多数只关注像素级特征,而不考虑医学先验知识。在本研究中,我们提出了一个基于关键医学概念的可解释框架,从临床医师的认知角度提供解释。此外,我们利用一个基于概念的图卷积神经(GCN)网络来构建关键医学概念之间的关系。对私人数据集的广泛实验分析表明,所提出的方法为临床医生提供了易于理解的推理结果洞察。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
15+阅读 · 2022年1月24日
Arxiv
15+阅读 · 2021年11月19日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
VIP会员
相关VIP内容
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员