Consider a geodesic triangle on a surface of constant curvature and subdivide it recursively into 4 triangles by joining the midpoints of its edges. We show the existence of a uniform $\delta>0$ such that, at any step of the subdivision, all the triangle angles lie in the interval $(\delta, \pi -\delta)$. Additionally, we exhibit stabilising behaviours for both angles and lengths as this subdivision progresses.
翻译:将恒定曲度表面的大地测量三角形考虑进去, 并通过连接其边缘的中点, 将其递归成四个三角形。 我们显示了一个统一的$\delta>0$ 的存在, 这样, 在分区的任何一步, 所有三角角都位于 $( delta,\ pi -\delta) 的间距 。 此外, 随着分区的进展, 我们展示了角和长度的稳定行为 。