Persistence modules have a natural home in the setting of stratified spaces and constructible cosheaves. In this article, we first give explicit constructible cosheaves for common data-motivated persistence modules, namely, for modules that arise from zig-zag filtrations (including monotone filtrations), and for augmented persistence modules (which encode the data of instantaneous events). We then identify an equivalence of categories between a particular notion of zig-zag modules and the combinatorial entrance path category on stratified $\mathbb{R}$. Finally, we compute the algebraic $K$-theory of generalized zig-zag modules and describe connections to both Euler curves and $K_0$ of the monoid of persistence diagrams as described by Bubenik and Elchesen.
翻译:持久性模块在设置分层空格和可构建的软壳单元时有一个自然的家。 在本条中, 我们首先为基于数据的常见持久性模块, 即来自 zig-zag 过滤器的模块( 包括单体过滤器), 以及用于增强持久性模块( 用于编码瞬时事件的数据) 的模块, 给出清晰可建构的 coshave 。 我们然后在 zig-zag 模块与 zig- zag 模块的组合入口路径类别 $\ mathb{R} $ 上找到一个等值的类别 。 最后, 我们对通用 zig-zag 模块的代数值 $K$- 理论进行了计算, 描述与 Bubunik 和 Elchesen 描述的 Euler 曲线和 $K_ 0$ 的持久性图形单项的连接 。