The vast proliferation of sensor devices and Internet of Things enables the applications of sensor-based activity recognition. However, there exist substantial challenges that could influence the performance of the recognition system in practical scenarios. Recently, as deep learning has demonstrated its effectiveness in many areas, plenty of deep methods have been investigated to address the challenges in activity recognition. In this study, we present a survey of the state-of-the-art deep learning methods for sensor-based human activity recognition. We first introduce the multi-modality of the sensory data and provide information for public datasets that can be used for evaluation in different challenge tasks. We then propose a new taxonomy to structure the deep methods by challenges. Challenges and challenge-related deep methods are summarized and analyzed to form an overview of the current research progress. At the end of this work, we discuss the open issues and provide some insights for future directions.
翻译:感官装置和物联网的大规模扩散使得能够应用以感官为基础的活动认识。然而,在实际情景下,存在着可能影响承认系统的绩效的巨大挑战。最近,随着深层次的学习证明在许多领域的有效性,已经对许多深层次的方法进行了调查,以应对活动认识方面的挑战。在本研究报告中,我们介绍了关于以感官为基础的人类活动认识的最先进的深层次学习方法的调查。我们首先介绍了感官数据的多模式,并为公共数据集提供了信息,可用于不同挑战任务中的评估。我们然后提出了一种新的分类方法,用挑战来构建深层次的方法。对挑战和挑战相关的深层次方法进行了总结和分析,以形成对当前研究进展的概览。在这项工作结束时,我们讨论了尚未解决的问题,并为未来方向提供了一些见解。