We present a metric space approach for high-dimensional sample-based trajectory planning. Sample-based methods such as RRT and its variants have been widely used in robotic applications and beyond, but the convergence of such methods is known only for the specific cases of holonomic systems and sub-Riemannian non-holonomic systems. Here, we present a more general theory using a metric-based approach and prove the algorithm's convergence for Euclidean and non-Euclidean spaces. The extended convergence theory is valid for joint planning of multiple heterogeneous holonomic or non-holonomic agents in a crowded environment in the presence of obstacles. We demonstrate the method both using abstract metric spaces ($ell^p$ geometries and fractal Sierpinski gasket) and using a multi-vehicle Reeds-Shepp vehicle system. For multi-vehicle systems, the degree of simultaneous motion can be adjusted by varying t.he metric on the joint state space, and we demonstrate the effects of this choice on the resulting choreographies.


翻译:我们为基于高维样本的轨迹规划提供了一种衡量空间方法,例如RRT及其变体等基于样本的方法在机器人应用中和之后被广泛使用,但此类方法的趋同仅针对Holonomic系统和亚Riemannian非holoomic系统的具体情况而已知,这里我们提出了一个使用基于计量方法的比较一般性的理论,并证明Euclidean空间和非Euclidean空间的算法趋同程度。扩展的趋同理论对于在存在障碍的情况下在拥挤环境中联合规划多种多元的holonomic或非holomic剂是有效的。我们用抽象的光度空间(ell ⁇ $和fractal Sierpinski垫片)和多机动车辆-Shepp车系统来演示这种方法。对于多机动车辆系统,可以通过对联合空间的不同测量来调整同时运动的程度。我们展示了这一选择对由此产生的舞蹈绘制的影响。

0
下载
关闭预览

相关内容

【经典书】算法博弈论,775页pdf,Algorithmic Game Theory
专知会员服务
148+阅读 · 2021年5月9日
专知会员服务
41+阅读 · 2021年4月2日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
人工智能 | ACCV 2020等国际会议信息5条
Call4Papers
6+阅读 · 2019年6月21日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Arxiv
0+阅读 · 2021年10月1日
Arxiv
4+阅读 · 2021年4月13日
VIP会员
相关资讯
人工智能 | ACCV 2020等国际会议信息5条
Call4Papers
6+阅读 · 2019年6月21日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Top
微信扫码咨询专知VIP会员