We propose LandLayer, a novel topological layer for general deep learning models based on persistence landscapes, in which we can efficiently exploit underlying topological features of the input data structure. We show differentiability with respect to layer inputs, for a general persistent homology with arbitrary filtration. Thus, our proposed layer can be placed anywhere in the network and feed critical information on the topological features of input data into subsequent layers to improve the learnability of the networks toward a given task. A task-optimal structure of LandLayer is learned during training via backpropagation, without requiring any input featurization or data preprocessing. We provide novel stability results, including an adaptation for the robust DTM filtration function, and show that the proposed layer is robust against noise and outliers. We demonstrate the effectiveness of our approach by classification experiments on various datasets.
翻译:我们建议LandLayer, 这是一种新型的地形层, 用于基于持久性地貌的普通深层学习模式, 我们可以在其中有效地利用输入数据结构的基本地形特征。 我们展示了在层投入方面的差异性, 这是一种具有任意过滤性的一般持久性同质性。 因此, 我们提议的层可以放置在网络的任何地方, 并将关于输入数据的地形特征的关键信息输入随后的层, 以提高网络对特定任务的学习能力。 LandLayer 的任务最佳结构在通过背面分析培训中学习, 不需要任何输入的编织或预处理。 我们提供了新的稳定性结果, 包括适应强大的 DTM 过滤功能, 并表明拟议的层对噪音和外缘的强大性。 我们通过对各种数据集进行分类实验, 展示了我们的方法的有效性 。