Most curriculum learning methods require an approach to sort the data samples by difficulty, which is often cumbersome to perform. In this work, we propose a novel curriculum learning approach termed Learning Rate Curriculum (LeRaC), which leverages the use of a different learning rate for each layer of a neural network to create a data-free curriculum during the initial training epochs. More specifically, LeRaC assigns higher learning rates to neural layers closer to the input, gradually decreasing the learning rates as the layers are placed farther away from the input. The learning rates increase at various paces during the first training iterations, until they all reach the same value. From this point on, the neural model is trained as usual. This creates a model-level curriculum learning strategy that does not require sorting the examples by difficulty and is compatible with any neural network, generating higher performance levels regardless of the architecture. We conduct comprehensive experiments on eight datasets from the computer vision (CIFAR-10, CIFAR-100, Tiny ImageNet), language (BoolQ, QNLI, RTE) and audio (ESC-50, CREMA-D) domains, considering various convolutional (ResNet-18, Wide-ResNet-50, DenseNet-121), recurrent (LSTM) and transformer (CvT, BERT, SepTr) architectures, comparing our approach with the conventional training regime. Moreover, we also compare with Curriculum by Smoothing (CBS), a state-of-the-art data-free curriculum learning approach. Unlike CBS, our performance improvements over the standard training regime are consistent across all datasets and models. Furthermore, we significantly surpass CBS in terms of training time (there is no additional cost over the standard training regime for LeRaC).


翻译:大部分课程学习方法都要求用困难的方法对数据样本进行分类,这往往很麻烦。在这项工作中,我们提出一种新的课程学习方法,称为学习率课程(LeRaC),利用神经网络每一层使用不同的学习率,在初始培训时代创建无数据课程。更具体地说,LeRaC将较高的学习率分配给神经层,随着各层离输入距离更远而逐渐降低学习率。在第一次培训迭代期间,学习率以不同的速度增长,直到它们都达到相同的价值。从这个角度出发,神经模型是按常规神经网络的每一层使用不同的学习率,在初始培训时代创建无数据课程。我们从计算机视野(CIFAR-10、CIFAR-100、Tiny图像网)、语言(BoolQBS、QNLI、RTE)和音频系统(ES-50、CREMA-D)进行相同的培训模式。 考虑各种C-CSB-C-C-CRELA 标准培训(我们C-C-C-CLS-C-C-C-C-CSLAD)的连续培训模式,以及不断的系统(我们C-C-C-C-C-C-C-C-C-C-C-C-C-Serviolverdestrual Statestrual Studal Studal Stastrual T tristrual T)的系统,我们C-tal T tral T tristrual Stal Stal Stal 的系统,我们C-tal 和C-trade) 和C-tradexxx 和C-tradestrual 和C-tal Stental Stental Stental 列的学习的系统,我们的系统,我们C-tal AS-deal AS-de AS AS AS AS AS AS AS AS AS AS) 和C-tal 和C-tal tradeal tradeal Stal Stal Stal Stal Stal 和C-tal AS AS 和C-tal tral tral AS) 和C-tal AS AS AS AS AS 和C-tal AS

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
首篇「课程学习(Curriculum Learning)」2021综述论文
专知会员服务
49+阅读 · 2021年1月31日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
专知会员服务
60+阅读 · 2020年3月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年1月19日
Arxiv
24+阅读 · 2021年1月25日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
VIP会员
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关论文
Arxiv
0+阅读 · 2023年1月19日
Arxiv
24+阅读 · 2021年1月25日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员