Teleoperated or remote-controlled driving complements automated driving and acts as transitional technology toward full automation. An economic advantage of teleoperated driving in logistics operations lies in managing fleets with fewer teleoperators compared to vehicles with in-vehicle drivers. This alleviates growing truck driver shortage problems in the logistics industry and saves costs. However, a trade-off exists between the teleoperator-to-vehicle ratio and the service level of teleoperation. This study designs a simulation framework to explore this trade-off generating multiple performance indicators as proxies for teleoperation service level. By applying the framework, we identify factors influencing the trade-off and optimal teleoperator-to-vehicle ratios under different scenarios. Our case study on road freight tours in The Netherlands reveals that for any operational setting, a teleoperation-to-vehicle ratio below one can manage all freight truck tours without delay, while one represents the current situation. The minimum teleoperator-to-vehicle ratio for zero-delay operations is never above 0.6, implying a minimum of 40% teleoperation labor cost saving. For operations where a small delay is allowed, teleoperator-to-vehicle ratios as low as 0.4 are shown to be feasible, which indicates potential savings of up to 60%. This confirms great promise for a positive business case for the teleoperated driving as a service.
翻译:暂无翻译