We consider the problem of learning from training data obtained in different contexts, where the underlying context distribution is unknown and is estimated empirically. We develop a robust method that takes into account the uncertainty of the context distribution. Unlike the conventional and overly conservative minimax approach, we focus on excess risks and construct distribution sets with statistical coverage to achieve an appropriate trade-off between performance and robustness. The proposed method is computationally scalable and shown to interpolate between empirical risk minimization and minimax regret objectives. Using both real and synthetic data, we demonstrate its ability to provide robustness in worst-case scenarios without harming performance in the nominal scenario.


翻译:我们考虑了从不同背景下获得的培训数据中学习的问题,这些培训数据的基本环境分布并不为人所知,而且是根据经验估算的。我们开发了一种考虑到背景分布不确定性的稳健方法。与传统和过于保守的迷你模式不同,我们侧重于超额风险,并构建具有统计覆盖面的分布套,以便在业绩和稳健性之间实现适当的权衡。拟议方法可以计算成可缩放,并显示将经验风险最小化与微量遗憾目标混为一谈。我们使用真实数据和合成数据,表明它有能力在最坏情况下提供稳健,而不会损害名义情景的绩效。

0
下载
关闭预览

相关内容

专知会员服务
15+阅读 · 2021年5月21日
专知会员服务
155+阅读 · 2021年3月6日
专知会员服务
44+阅读 · 2020年10月31日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员