In artificial multi-agent systems, the ability to learn collaborative policies is predicated upon the agents' communication skills: they must be able to encode the information received from the environment and learn how to share it with other agents as required by the task at hand. We present a deep reinforcement learning approach, Connectivity Driven Communication (CDC), that facilitates the emergence of multi-agent collaborative behaviour only through experience. The agents are modelled as nodes of a weighted graph whose state-dependent edges encode pair-wise messages that can be exchanged. We introduce a graph-dependent attention mechanisms that controls how the agents' incoming messages are weighted. This mechanism takes into full account the current state of the system as represented by the graph, and builds upon a diffusion process that captures how the information flows on the graph. The graph topology is not assumed to be known a priori, but depends dynamically on the agents' observations, and is learnt concurrently with the attention mechanism and policy in an end-to-end fashion. Our empirical results show that CDC is able to learn effective collaborative policies and can over-perform competing learning algorithms on cooperative navigation tasks.


翻译:在人工多试剂系统中,学习协作政策的能力取决于代理人的沟通技能:他们必须能够按照手头的任务要求,将从环境中收到的信息编码起来,并学习如何与其他代理人分享这些信息。我们提出了一个深层强化学习方法,即连接驱动器通信(CDC),该方法只能通过经验促进多代理人合作行为的出现。这些代理人的模型是一个加权图的节点,其国家依赖的边缘能编码可以交换的双向电文。我们引入了一个依赖图形的注意机制,控制代理人收到的信息是如何加权的。这个机制充分考虑到了图表所代表的系统的现状,并基于一个能够捕捉图上信息流动方式的传播过程。图形表层学不被认为是先入为主,而是动态地依赖于代理人的观察,并且以终端到终端的方式与关注机制和政策同时学习。我们的经验显示,CDC能够学习有效的协作政策,并且能够超越合作导航任务上相互竞争的学习算法。

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
国家自然科学基金
29+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
9+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年2月3日
Arxiv
0+阅读 · 2023年2月1日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
相关基金
国家自然科学基金
29+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
9+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员