We consider a distributionally robust formulation of stochastic optimization problems arising in statistical learning, where robustness is with respect to uncertainty in the underlying data distribution. Our formulation builds on risk-averse optimization techniques and the theory of coherent risk measures. It uses semi-deviation risk for quantifying uncertainty, allowing us to compute solutions that are robust against perturbations in the population data distribution. We consider a large family of loss functions that can be non-convex and non-smooth and develop an efficient stochastic subgradient method. We prove that it converges to a point satisfying the optimality conditions. To our knowledge, this is the first method with rigorous convergence guarantees in the context of non-convex non-smooth distributionally robust stochastic optimization. Our method can achieve any desired level of robustness with little extra computational cost compared to population risk minimization. We also illustrate the performance of our algorithm on real datasets arising in convex and non-convex supervised learning problems.
翻译:我们认为,统计学习中产生的随机优化问题,其稳健性在于基础数据分布的不确定性。我们的表述基于风险反向优化技术和一致风险计量理论。它使用半减轻风险风险的风险来量化不确定性,使我们能够计算出在人口数据分布中对扰动具有稳健性的解决办法。我们考虑到一个庞大的损失函数大家庭,这些功能可以是非凝固和非吸附的,并开发一种高效的随机次梯度方法。我们证明它会达到一个满足最佳条件的点。据我们所知,这是在非对流非分布均匀稳健的随机优化背景下具有严格趋同保证的第一种方法。我们的方法可以达到任何理想的稳健度水平,其计算成本与人口风险最小化相比少一些额外的计算成本。我们还举例说明了我们对于在配置和非凝固监督的学习问题中产生的真实数据集的算法的绩效。