Image super-resolution (SR) is one of the vital image processing methods that improve the resolution of an image in the field of computer vision. In the last two decades, significant progress has been made in the field of super-resolution, especially by utilizing deep learning methods. This survey is an effort to provide a detailed survey of recent progress in single-image super-resolution in the perspective of deep learning while also informing about the initial classical methods used for image super-resolution. The survey classifies the image SR methods into four categories, i.e., classical methods, supervised learning-based methods, unsupervised learning-based methods, and domain-specific SR methods. We also introduce the problem of SR to provide intuition about image quality metrics, available reference datasets, and SR challenges. Deep learning-based approaches of SR are evaluated using a reference dataset. Some of the reviewed state-of-the-art image SR methods include the enhanced deep SR network (EDSR), cycle-in-cycle GAN (CinCGAN), multiscale residual network (MSRN), meta residual dense network (Meta-RDN), recurrent back-projection network (RBPN), second-order attention network (SAN), SR feedback network (SRFBN) and the wavelet-based residual attention network (WRAN). Finally, this survey is concluded with future directions and trends in SR and open problems in SR to be addressed by the researchers.
翻译:图像超分辨率(SR)是提高计算机视觉领域图像分辨率的重要图像处理方法之一。在过去20年中,在超级分辨率领域取得了显著进展,特别是使用了深层学习方法。这项调查旨在从深层学习的角度对单一图像超分辨率的最新进展进行详细调查,同时也为图像超分辨率所用的初始传统方法提供信息。调查将图像SR方法分为四类,即经典方法、受监督的学习方法、不受监督的学习方法以及特定域的SR方法。我们还提出了斯洛伐克共和国的问题,以提供关于图像质量计量、现有参考数据集和SR挑战的直觉。用参考数据集对基于深度学习的方法进行了评估。经审查的图像超分辨率(SRRM)的一些方法包括强化的深层SR网络(EDSR)、周期内GAN(CinGAN)、多尺度的残余网络(MSRN)、元残余密集网络(M-RBS-RR)的后期网络(MER-RIS),这一后期网络(MER-RIS-RMR)的后期关注网络(MRIS-RIS-S-Rstalstalstal recreal),该网络(M)的后端网络(M-RIS-Rst-Rst-S-S-Rst-Rst-Rst-Rstyal)的后端网络(由该网络和后端网络(M-S-S-S-S-S-S-S-S-S-Surst-S-S-S-S-S-res-S-res-res-res-Symal-Symal-Symal-Symal-Systemal-Sy))的结束))的后端网络(由这一网络(由这一网络的后端网络的结束的结束))))和后端网络的后向)的后向)。