Systematic quantification of data quality is critical for consistent model performance. Prior works have focused on out-of-distribution data. Instead, we tackle an understudied yet equally important problem of characterizing incongruous regions of in-distribution (ID) data, which may arise from feature space heterogeneity. To this end, we propose a paradigm shift with Data-SUITE: a data-centric AI framework to identify these regions, independent of a task-specific model. Data-SUITE leverages copula modeling, representation learning, and conformal prediction to build feature-wise confidence interval estimators based on a set of training instances. These estimators can be used to evaluate the congruence of test instances with respect to the training set, to answer two practically useful questions: (1) which test instances will be reliably predicted by a model trained with the training instances? and (2) can we identify incongruous regions of the feature space so that data owners understand the data's limitations or guide future data collection? We empirically validate Data-SUITE's performance and coverage guarantees and demonstrate on cross-site medical data, biased data, and data with concept drift, that Data-SUITE best identifies ID regions where a downstream model may be reliable (independent of said model). We also illustrate how these identified regions can provide insights into datasets and highlight their limitations.
翻译:数据质量的系统化量化对于连贯一致的模型性能至关重要。先前的工作侧重于分配外的数据。相反,我们处理一个研究不足但同样重要的问题,即对分布(ID)数据不相容的区域进行定性,这个问题可能来自空间特征的差异。为此,我们提议与Data-SUITE一起进行范式转变:一个独立于具体任务模式的以数据为中心的AI框架,以确定这些地区,独立于具体任务模式;数据-SUITE利用组合模型、代表性学习和符合性预测,以建立基于一组培训实例的、有特色的信任期间估计器。这些估计器可用于评估测试实例与成套培训的一致性,并回答两个实际有用的问题:(1)哪些测试实例将由经过培训实例培训的模型可靠预测?(2)我们能否确定地貌空间的相异区域,以便数据所有人了解数据局限性或指导未来数据收集工作?我们从经验上验证数据-SUITE的性能和覆盖范围保障,并展示跨地点的医疗数据、偏差数据以及下游数据概念,从而说明这些区域能够提供最佳的深度数据。