A phenomenological Hamiltonian of a closed (i.e., unitary) quantum system is assumed to have an $N$ by $N$ real-matrix form composed of a unperturbed diagonal-matrix part $H^{(N)}_0$ and of a tridiagonal-matrix perturbation $\lambda\,W^{(N)}(\lambda)$. The requirement of the unitarity of the evolution of the system (i.e., of the diagonalizability and of the reality of the spectrum) restricts, naturally, the variability of the matrix elements to a "physical" domain ${\cal D}^{[N]} \subset \mathbb{R}^d$. We fix the unperturbed matrix (simulating a non-equidistant, square-well-type unperturbed spectrum) and we only admit the maximally non-Hermitian antisymmetric-matrix perturbations. This yields the hiddenly Hermitian model with the measure of perturbation $\lambda$ and with the $d=N$ matrix elements which are, inside ${\cal D}^{[N]}$, freely variable. Our aim is to describe the quantum phase-transition boundary $\partial {\cal D}^{[N]}$ (alias exceptional-point boundary) at which the unitarity of the system is lost. Our main attention is paid to the strong-coupling extremes of stability, i.e., to the Kato's exceptional points of order $N$ (EPN) and to the (sharply spiked) shape of the boundary $\partial {\cal D}^{[N]}$ in their vicinity. The feasibility of our constructions is based on the use of the high-precision arithmetics in combination with the computer-assisted symbolic manipulations (including, in particular, the Gr\"{o}bner basis elimination technique).
翻译:一种封闭的( 单体) 量子系统中的元素汉密尔顿, 假定其以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为货币为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为基, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为基, 以美元, 以美元, 以美元, 以美元为内, 以美元为货币, 以美元为货币, 以美元为货币, 以美元为基, 以美元, 以美元, 以美元, 以美元, 以美元