The quantum k-Local Hamiltonian problem is a natural generalization of classical constraint satisfaction problems (k-CSP) and is complete for QMA, a quantum analog of NP. Although the complexity of k-Local Hamiltonian problems has been well studied, only a handful of approximation results are known. For Max 2-Local Hamiltonian where each term is a rank 3 projector, a natural quantum generalization of classical Max 2-SAT, the best known approximation algorithm was the trivial random assignment, yielding a 0.75-approximation. We present the first approximation algorithm beating this bound, a classical polynomial-time 0.764-approximation. For strictly quadratic instances, which are maximally entangled instances, we provide a 0.801 approximation algorithm, and numerically demonstrate that our algorithm is likely a 0.821-approximation. We conjecture these are the hardest instances to approximate. We also give improved approximations for quantum generalizations of other related classical 2-CSPs. Finally, we exploit quantum connections to a generalization of the Grothendieck problem to obtain a classical constant-factor approximation for the physically relevant special case of strictly quadratic traceless 2-Local Hamiltonians on bipartite interaction graphs, where a inverse logarithmic approximation was the best previously known (for general interaction graphs). Our work employs recently developed techniques for analyzing classical approximations of CSPs and is intended to be accessible to both quantum information scientists and classical computer scientists.


翻译:量子 k- 本地 汉密尔顿 问题 量 K- 本地 汉密尔顿 问题 是 典型约束性满意度问题的自然概括 (k- CSP), QMA 的类似 NP 。 虽然对 k- 本地 汉密尔顿 问题的复杂性进行了很好的研究, 但只知道几件近似结果。 对于 Max 2 本地 汉密尔顿 人来说, 每个术语都是 3 级投影机, 一个经典 Max 2- SAT 的自然量子概括, 最著名的近似算法是 微不足道的随机分配, 得出0. 75 的接近率达到0. 7 715 的接近率。 最后, 我们展示了首个匹配算法, 一个典型的多度- 多度- 时间 0. 764- 准度 。 对于严格意义上的四边形实例, 我们提供了0. 801 近似接近算法的算法, 我们的算法可能是 0. 0. 821 相近似3 。 我们推测这些是最难的事例。 我们还推推推的。 我们还推推准了其它相关 经典 经典 2 C- CSP 的 的 的 直径直径直径直方平面图, 我们的直径直径直径直径直径直径为 的直径直径直径的精确的精确的精确的精确的直径直判法, 我们利用了 的直判法, 。

0
下载
关闭预览

相关内容

知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
108+阅读 · 2020年6月10日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
【大规模数据系统,552页ppt】Large-scale Data Systems
专知会员服务
60+阅读 · 2019年12月21日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
量化金融强化学习论文集合
专知
13+阅读 · 2019年12月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
【OpenAI】深度强化学习关键论文列表
专知
11+阅读 · 2018年11月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年8月6日
VIP会员
相关资讯
量化金融强化学习论文集合
专知
13+阅读 · 2019年12月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
【OpenAI】深度强化学习关键论文列表
专知
11+阅读 · 2018年11月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员