We give lower bounds on the performance of two of the most popular sampling methods in practice, the Metropolis-adjusted Langevin algorithm (MALA) and multi-step Hamiltonian Monte Carlo (HMC) with a leapfrog integrator, when applied to well-conditioned distributions. Our main result is a nearly-tight lower bound of $\widetilde{\Omega}(\kappa d)$ on the mixing time of MALA from an exponentially warm start, matching a line of algorithmic results up to logarithmic factors and answering an open question of Chewi et. al. We also show that a polynomial dependence on dimension is necessary for the relaxation time of HMC under any number of leapfrog steps, and bound the gains achievable by changing the step count. Our HMC analysis draws upon a novel connection between leapfrog integration and Chebyshev polynomials, which may be of independent interest.


翻译:我们对两种最受欢迎的采样方法,即大都会调整的朗埃文算法(MALA)和多步汉密尔顿·蒙特卡洛(HMC)的性能进行了较低的限制,这些算法在应用到有良好条件的分布时具有一个跳式集成器。我们的主要结果是,对MALA的混合时间从一个指数性温暖的开始算法结果与对数因素相匹配,并回答了Chewi等人的开放问题。 我们还表明,HMC在任何几个跃式步骤下放松时间都需要多度依赖尺寸,并且通过改变步骤计数将所实现的收益捆绑起来。我们的HMC分析从跳式集成和Chebyshev 聚谷之间的新颖联系中得出,这些联系可能具有独立的兴趣。

0
下载
关闭预览

相关内容

专知会员服务
26+阅读 · 2021年4月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
已删除
将门创投
3+阅读 · 2019年1月29日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年8月5日
Arxiv
3+阅读 · 2018年10月18日
VIP会员
相关VIP内容
专知会员服务
26+阅读 · 2021年4月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
已删除
将门创投
3+阅读 · 2019年1月29日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员