Consider any sequence of finite groups $A^t$, where $t$ takes values in an integer index set $\mathbf{Z}$. A group system $A$ is a set of sequences with components in $A^t$ that forms a group under componentwise addition in $A^t$, for each $t\in\mathbf{Z}$. In the setting of group systems, a natural definition of a linear system is a homomorphism from a group of inputs to an output group system $A$. We show that any group can be the input group of a linear system and some group system. In general the kernel of the homomorphism is nontrivial. We show that any $\ell$-controllable complete group system $A$ is a linear system whose input group is a generator group $({\mathcal{U}},\circ)$, deduced from $A$, and then the kernel is always trivial. The input set ${\mathcal{U}}$ is a set of tensors, a double Cartesian product space of sets $G_k^t$, with indices $k$, for $0\le k\le\ell$, and time $t$, for $t\in\mathbf{Z}$. $G_k^t$ is a set of generator labels $g_k^t$ where $g_k^t$ is the label of a generator with nontrivial span for the time interval $[t,t+k]$. We show the generator group contains an elementary system, an infinite collection of elementary groups, one for each $k$ and $t$, defined on small subsets of ${\mathcal{U}}$, in the shape of triangles, which form a tile like structure over ${\mathcal{U}}$. There is a homomorphism from each elementary group to any elementary group defined on smaller tiles of the former group. Any elementary system is sufficient to define a unique generator group up to isomorphism, and therefore is sufficient to construct a linear system and group system as well. Any linear block code is a strongly controllable group system. Then we can obtain new results on the structure of block codes using the generator group. There is a harmonic theory of group systems which we study using the generator group.
翻译:考虑任何定点组的序列 $A$, 其中Ut$在整数索引中取值 $\ mathb\\\$。 组合系统 $A$是一组含有元组成组的序列, 以美元组成一个组成组 $A_t$, 对于每个美元组成组来说, 线性系统的自然定义是一组输入到一个输出组的同质化 $A$。 我们显示任何组可以是直线系统和某个组的输入组 $\ mathbr_f_$$。 一个组合的自然定义来自$A$, 一个组合的自然定义来自$A$, 一个小的组合来自一个小集团。 我们的输入设置 $xxyal_%t 。 任何直线系统和某些组的输入组的输入组可以是一组, 一个双卡通的内产值 $G_\\\\\\\\\\\\ comma 结构, 一个直线性系统的输入是一个组合, 一个基组的组的基组是 美元, 一个基组的基体, 一个基组的基体, 一个基体的基体, 一个基体的系统, 一个基体的基体的系统, 一个基体, 一个基体的系统的系统的系统, 一个基体, 一个基体, 一个基体的系统的系统, 一个基体, 一个基体, 一个基体, 一个基体, 一个基体, 一个基体, 一个基体, 一个基体, 一个基体, 一个基体, 一个基体, 一个基体, 一个基体, 一个基体, 一个基体, 一个基体, 一个基体, 一个基体, 一个基体, 一个基体, 一个基体, 一个基体, 一个基体, 一个基体, 一个基体, 一个基体, 一个基体, 一个基体, 一个基体, 一个基体, 一个基体, 一个基体, 一个基体,一个基体, 一个基体, 一个基体,一个基体,一个基体,一个基体,一个的基体,一个基体, 一个基体,一个基体,一个基体,一个基体,一个基体,一个基体,一个基体,一个基体,一个基体,一个基体,一个基体,一个基体