Periodic phenomena are oscillating signals found in many naturally-occurring time series. A periodogram can be used to measure the intensities of oscillations at different frequencies over an entire time series but sometimes we are interested in measuring how periodicity intensity at a specific frequency varies throughout the time series. This can be done by calculating periodicity intensity within a window then sliding and recalculating the intensity for the window, giving an indication of how periodicity intensity at a specific frequency changes throughout the series. We illustrate three applications of this the first of which is movements of a herd of new-born calves where we show how intensity of the 24h periodicity increases and decreases synchronously across the herd. We also show how changes in 24h periodicity intensity of activities detected from in-home sensors can be indicative of overall wellness. We illustrate this on several weeks of sensor data gathered from each of the homes of 23 older adults. Our third application is the intensity of 7-day periodicity of hundreds of University students accessing online resources from a virtual learning environment (VLE) and how the regularity of their weekly learning behaviours changes throughout a teaching semester. The paper demonstrates how periodicity intensity reveals insights into time series data not visible using other forms of analysis


翻译:许多自然发生的时间序列中都发现周期性现象,这些周期性现象是周期性变化的信号,在许多自然发生的时间序列中,经常现象是振动的信号。可以使用周期性图表来测量整个时间序列中不同频率在不同频率的振动强度,但有时我们有兴趣测量整个时间序列中特定频率的周期性强度是如何变化的。这可以通过在窗口中计算周期性强度,然后滑动并重新计算窗口的强度,从而显示整个系列中特定频率变化的周期性强度。我们介绍了这一系列中的第一个应用,第一个应用是一组新出生的小牛群的移动,其中我们展示了24小时周期性增长的强度,以及各群群群之间同步下降。我们还展示了家庭传感器所检测到的24小时活动周期性强度的变化如何能显示整体健康。我们用从23个老年人的每个家中收集的传感器数据来说明这一点。我们的第三个应用是,从虚拟学习环境(VLE)获得在线资源的数百名大学生的7天周期性强度,以及他们每周学习行为规律性如何在整个教学学期期间以可见的周期性分析方式显示其他数据的深度分析。文件显示如何显示不同时间序列。

0
下载
关闭预览

相关内容

Into the Metaverse,93页ppt介绍元宇宙概念、应用、趋势
专知会员服务
48+阅读 · 2022年2月19日
专知会员服务
18+阅读 · 2020年9月6日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
全球首个GNN为主的AI创业公司,募资$18.5 million!
图与推荐
1+阅读 · 2022年4月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年4月11日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
全球首个GNN为主的AI创业公司,募资$18.5 million!
图与推荐
1+阅读 · 2022年4月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员