Human activities within smart infrastructures generate a vast amount of IMU data from the wearables worn by individuals. Many existing studies rely on such sensory data for human activity recognition (HAR); however, one of the major bottlenecks is their reliance on pre-annotated or labeled data. Manual human-driven annotations are neither scalable nor efficient, whereas existing auto-annotation techniques heavily depend on video signatures. Still, video-based auto-annotation needs high computation resources and has privacy concerns when the data from a personal space, like a smart-home, is transferred to the cloud. This paper exploits the acoustic signatures generated from human activities to label the wearables' IMU data at the edge, thus mitigating resource requirement and data privacy concerns. We utilize acoustic-based pre-trained HAR models for cross-modal labeling of the IMU data even when two individuals perform simultaneous but different activities under the same environmental context. We observe that non-overlapping acoustic gaps exist with a high probability during the simultaneous activities performed by two individuals in the environment's acoustic context, which helps us resolve the overlapping activity signatures to label them individually. A principled evaluation of the proposed approach on two real-life in-house datasets further augmented to create a dual occupant setup, shows that the framework can correctly annotate a significant volume of unlabeled IMU data from both individuals with an accuracy of $\mathbf{82.59\%}$ ($\mathbf{\pm 17.94\%}$) and $\mathbf{98.32\%}$ ($\mathbf{\pm 3.68\%}$), respectively, for a workshop and a kitchen environment.
翻译:智能基础设施中的人类活动产生大量来自个人磨损的IMU数据。 许多现有研究依靠这些感官数据来识别人类活动(HAR); 然而,一个主要瓶颈是依赖预先附加说明或标签数据。 人工驱动的人工说明既不可缩放,效率也不高, 而现有的自动批注技术在很大程度上依赖于视频签名。 然而, 视频的自动批注需要高量计算资源, 当个人空间的数据( 如智能之家)被转移到云层时, 有隐私问题。 本文利用人类活动产生的声学信号来标出在边缘的可磨损的IMU数据( HAR); 然而, 主要的瓶颈之一是依靠预先培训的 HAR 模型来交叉标注IMU数据, 即使有两人在同一环境背景下同时进行不同活动。 我们观察到, 在两个个人同时进行的活动中, 高概率存在不重叠的声学差距。 这有助于我们解决从人类活动中生成的重叠的活动签名, 从而在边缘标注的IMUMU $ $59 数据数量上, 我们使用基于既有原则性的方法, 在两个真正的环境上创建了一种双向数据设置。