Bayesian model selection, with precedents in George and McCulloch (1993) and Abramovich et al. (1998), support credibility measures that relate model uncertainty, but computation can be costly when sparse priors are approximate. We design an exact selection engine suitable for Gauss noise, t-distributed noise, and logistic learning, benefiting from data-structures derived from coordinate descent lasso. Gibbs sampler chains are stored in a compressed binary format compatible with Equi-Energy (Kou et al., 2006) tempering. We achieve a grouped-effects selection model, similar to the setting for group lasso, to determine co-entry of coefficients into the model. We derive a functional integrand for group inclusion, and introduce a new MCMC switching step to avoid numerical integration. Theorems show this step has exponential convergence to target distribution. We demonstrate a role for group selection to inform on genetic decomposition in a diallel experiment, and identify potential quantitative trait loci in p > 40K Heterogenous Stock haplotype/phenotype studies.
翻译:Bayesian 模型选择,在George和McCulloch(1993年)和Abramovich等人(1998年)的先例下,支持与模型不确定性有关的可信度措施,但计算成本可能比较昂贵,我们设计了适合Gaus噪音、T分布式噪音和后勤学习的精确选择引擎,利用了从协调下潜带得出的数据结构。Gibbs采样链以与Equi-Energy(Kou等人,2006年)相容的压缩二元格式存储(Kou等人,2006年),我们实现了一个与群集系数设置相似的组合效应选择模型,以确定系数是否同时进入模型。我们为群集设计了一个功能性异项,并引入了一个新的MCMC转换步骤,以避免数字整合。这些理论显示这一步骤与目标分布有指数趋同。我们展示了小组选择的作用,以告知二等能源实验中的遗传脱腐化位置,并在p > 40K Hegenous 型/phenotytys研究中确定潜在的定量特性。</s>