This work presents the first silicon-validated dedicated EGM-to-ECG (G2C) processor, dubbed e-G2C, featuring continuous lightweight anomaly detection, event-driven coarse/precise conversion, and on-chip adaptation. e-G2C utilizes neural network (NN) based G2C conversion and integrates 1) an architecture supporting anomaly detection and coarse/precise conversion via time multiplexing to balance the effectiveness and power, 2) an algorithm-hardware co-designed vector-wise sparsity resulting in a 1.6-1.7$\times$ speedup, 3) hybrid dataflows for enhancing near 100% utilization for normal/depth-wise(DW)/point-wise(PW) convolutions (Convs), and 4) an on-chip detection threshold adaptation engine for continuous effectiveness. The achieved 0.14-8.31 $\mu$J/inference energy efficiency outperforms prior arts under similar complexity, promising real-time detection/conversion and possibly life-critical interventions
翻译:这项工作展示了第一个称为e-G2C的、称为e-G2C的、称为e-G2C的、以连续轻量异常检测、事件驱动的粗粗/精密转换和芯片适应为特点的专用EGM-向ECG(G2C)处理器。 e-G2C利用基于G2C的神经网络(NN)转换和集成 1,这是一个支持异常检测和通过时间多路转换粗化/精密转换以平衡效果和力量的架构;2 一种算法-硬件共同设计的矢量-明智的封闭,导致1.6-1.7美元时间的加速;3 混合数据流,以加强近100%的正常/深入(DW)/点(PW)变异(Convorps)的利用率;4 一种持续有效的芯片检测阈值适应引擎。