This paper extends the recently obtained complete and continuous map of the Lattice Isometry Space (LISP) to the practical case of dimension 3. A periodic 3-dimensional lattice is an infinite set of all integer linear combinations of basis vectors in Euclidean 3-space. Motivated by crystal structures determined in a rigid form, we study lattices up to rigid motion or isometry, which is a composition of translations, rotations and reflections. The resulting space LISP consists of infinitely many isometry classes of lattices. In dimension 3, we parameterise this continuous space LISP by six coordinates and introduce new metrics satisfying the metric axioms and continuity under all perturbations. This parameterisation helps to visualise hundreds of thousands of real crystal lattices from the Cambridge Structural Database for the first time.


翻译:本文将最近获得的Lattice Isography Space(LISP)完整和连续的地图扩展至实际的维度 3 。 定期的三维阵列是一个无限的集合, 由Euclidean 3- space 中所有基础矢量的整数线性组合组成。 受以僵硬形式测定的晶体结构的驱动, 我们研究的是静态运动或等离子测量, 这是一种翻译、 旋转和反射的构成。 由此形成的空间LISP包含无限多等量级的拉特克。 在 3 维度 3 中, 我们用六个坐标对连续的空间 LISP进行参数化, 并在所有扰动状态下引入符合矩阵轴和连续性的新度指标 。 这种参数化有助于首次从剑桥结构数据库中视觉数十万个真正的晶体拉特。

0
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
专知会员服务
88+阅读 · 2021年6月29日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
已删除
AI掘金志
7+阅读 · 2019年7月8日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Linguistically Regularized LSTMs for Sentiment Classification
黑龙江大学自然语言处理实验室
8+阅读 · 2018年5月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年11月15日
Arxiv
0+阅读 · 2021年11月12日
VIP会员
相关资讯
已删除
AI掘金志
7+阅读 · 2019年7月8日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Linguistically Regularized LSTMs for Sentiment Classification
黑龙江大学自然语言处理实验室
8+阅读 · 2018年5月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员