The Half-Space Matching (HSM) method has recently been developed as a new method for the solution of 2D scattering problems with complex backgrounds, providing an alternative to Perfectly Matched Layers (PML) or other artificial boundary conditions. Based on half-plane representations for the solution, the scattering problem is rewritten as a system coupling (1) a standard finite element discretisation localised around the scatterer and (2) integral equations whose unknowns are traces of the solution on the boundaries of a finite number of overlapping half-planes contained in the domain. While satisfactory numerical results have been obtained for real wavenumbers, well-posedness and equivalence of this HSM formulation to the original scattering problem have been established only for complex wavenumbers. In the present paper we show, in the case of a homogeneous background, that the HSM formulation is equivalent to the original scattering problem also for real wavenumbers, and so is well-posed, provided the traces satisfy radiation conditions at infinity analogous to the standard Sommerfeld radiation condition. As a key component of our argument we show that, if the trace on the boundary of a half-plane satisfies our new radiation condition, then the corresponding solution to the half-plane Dirichlet problem satisfies the Sommerfeld radiation condition in a slightly smaller half-plane. We expect that this last result will be of independent interest, in particular in studies of rough surface scattering.
翻译:半空间匹配方法(HSM)是最近开发的一种新方法,用于解决背景复杂的2D散射问题,为完全匹配层或其他人工边界条件提供了替代方法。根据半平板表示的解决方案,散射问题被改写成一个系统组合:(1) 分散器周围的一个标准限量元素分解点,(2) 其未知点是域内所含重叠半天平面有限数量界限解决方案的痕迹。虽然对真实波数已经取得了令人满意的数字结果,但这一HSM配方与原始散射问题的精度和等同度仅针对复杂的波数。在本文中,我们显示,在单一背景中,散射问题相当于原始散射问题,真实波数也相当于分散问题的原始分解点,以及2个整体方程等同,只要在与标准Sommerfel的辐射状况相似的不精确度上满足辐射条件。作为我们论点的一个关键组成部分,我们证明,如果在平面的粗平面上这一半平面的深度图将显示我们最后的半平面上的辐射结果,那么,那么,在平面的平面的平面上的半平面上的细度将是我们最后的平面上的一个微的平面上,那么的平面上的一个微的平面结果。