The CP decomposition for high dimensional non-orthogonal spiked tensors is an important problem with broad applications across many disciplines. However, previous works with theoretical guarantee typically assume restrictive incoherence conditions on the basis vectors for the CP components. In this paper, we propose new computationally efficient composite PCA and concurrent orthogonalization algorithms for tensor CP decomposition with theoretical guarantees under mild incoherence conditions. The composite PCA applies the principal component or singular value decompositions twice, first to a matrix unfolding of the tensor data to obtain singular vectors and then to the matrix folding of the singular vectors obtained in the first step. It can be used as an initialization for any iterative optimization schemes for the tensor CP decomposition. The concurrent orthogonalization algorithm iteratively estimates the basis vector in each mode of the tensor by simultaneously applying projections to the orthogonal complements of the spaces generated by others CP components in other modes. It is designed to improve the alternating least squares estimator and other forms of the high order orthogonal iteration for tensors with low or moderately high CP ranks, and it is guaranteed to converge rapidly when the error of any given initial estimator is bounded by a small constant. Our theoretical investigation provides estimation accuracy and convergence rates for the two proposed algorithms. Our implementations on synthetic data demonstrate significant practical superiority of our approach over existing methods.


翻译:高维非正统悬浮悬浮加压的电解分解是多个学科广泛应用的一个重要问题。然而,先前的理论保障工作通常假定在CP组件的向量基矢量上存在限制性的不一致条件。在本文件中,我们提议采用新的计算高效复合五氯苯和同时的正压CP分解算法,并在轻度不一致性条件下同时采用理论保障,对Exmor CP分解进行新的计算高效复合五氯苯和同时的正态共振算算法,同时在轻度不一致性条件下对Exronor CP组件产生的空间进行理论保证。复合五氯苯将主要成分或单值分解两次应用主要成分,首先应用为获得单向矢量数据而展开的矩阵,然后使用第一步获得的单向向向单个矢量矢量矢量矢量的矩阵折叠叠合。同时,同时将预测其他CP组件在其它方式中产生的空间的交替最小正方位估测算器和其他形式合成值分解分解分解,目的是改进在第一步获得的单个矢量或小向下排列的正统的正统的正态或正统趋同度的速率率率率率率,在我们现有的向下进行快速调查时,通过中或正态压压压压压压前的深度测测算算算算法的当前对每个模式的速率测算法的速率的速率率的速率的速率的速率为我们向的速率的快速测提供了的快速测算法,为我们制的深度测测测算的速率的速率的速率和制的速率的快速测算算算算法的速率度的速率的速率度的速率的速率的速率的速率的速率为我们的速率的速率的速率的速率的速率的速率提供了提供制的速率的快速测提供了的初和制的速率的速率为我们制的快速测提供了中或制的速率的快速测算法的初和制的速率的速率的速率和制的速率的速率的速率的速率的初测算。

0
下载
关闭预览

相关内容

这是第25届年度会议,讨论有约束计算的所有方面,包括理论、算法、环境、语言、模型、系统和应用,如决策、资源分配、调度、配置和规划。为了纪念25周年,吉恩·弗洛伊德创作了一本“虚拟卷”来庆祝这个系列会议。信息可以在这里找到。约束编程协会有本系列中以前的会议列表。CP 2019计划将包括展示关于约束技术的高质量科学论文。除了通常的技术轨道外,CP 2019年会议还将有主题轨道。每个赛道都有一个专门的小组委员会,以确保有能力的评审员将审查这些领域的人提交的论文。 官网链接:https://cp2019.a4cp.org/index.html
专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
【推荐】RNN无损压缩方法DeepZip(附代码)
机器学习研究会
5+阅读 · 2018年1月1日
Capsule Networks教程
全球人工智能
10+阅读 · 2017年11月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年1月17日
Arxiv
0+阅读 · 2022年1月13日
Learning to Importance Sample in Primary Sample Space
Arxiv
3+阅读 · 2017年12月14日
VIP会员
相关资讯
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
【推荐】RNN无损压缩方法DeepZip(附代码)
机器学习研究会
5+阅读 · 2018年1月1日
Capsule Networks教程
全球人工智能
10+阅读 · 2017年11月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员