Submodular optimization has numerous applications such as crowdsourcing and viral marketing. In this paper, we study the fundamental problem of non-negative submodular function maximization subject to a $k$-system constraint, which generalizes many other important constraints in submodular optimization such as cardinality constraint, matroid constraint, and $k$-extendible system constraint. The existing approaches for this problem achieve the best-known approximation ratio of $k+2\sqrt{k+2}+3$ (for a general submodular function) based on deterministic algorithmic frameworks. We propose several randomized algorithms that improve upon the state-of-the-art algorithms in terms of approximation ratio and time complexity, both under the non-adaptive setting and the adaptive setting. The empirical performance of our algorithms is extensively evaluated in several applications related to data mining and social computing, and the experimental results demonstrate the superiorities of our algorithms in terms of both utility and efficiency.


翻译:子模块优化有许多应用, 如众包和病毒营销。 在本文中, 我们研究非负性子模块功能最大化的根本问题, 受美元系统的制约, 这概括了子模块优化方面的许多其他重要限制, 如基质约束、 机器人约束和 美元可扩展系统约束。 解决这一问题的现有方法达到了基于确定性算法框架的最著名的近似比率 $+2\ sqrt{k+2 ⁇ 3 ( 用于一般子模块功能 ) 。 我们建议了几种随机化算法, 在非适应性环境以及适应性环境下, 在近似比和时间复杂性方面改进最新算法。 我们算法的经验性绩效在数据挖掘和社会计算的若干应用中得到了广泛评价, 实验结果显示了我们算法在实用性和效率方面的优异性。

0
下载
关闭预览

相关内容

专知会员服务
15+阅读 · 2021年5月21日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Arxiv
7+阅读 · 2020年6月29日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Top
微信扫码咨询专知VIP会员