Submodular optimization has numerous applications such as crowdsourcing and viral marketing. In this paper, we study the fundamental problem of non-negative submodular function maximization subject to a $k$-system constraint, which generalizes many other important constraints in submodular optimization such as cardinality constraint, matroid constraint, and $k$-extendible system constraint. The existing approaches for this problem achieve the best-known approximation ratio of $k+2\sqrt{k+2}+3$ (for a general submodular function) based on deterministic algorithmic frameworks. We propose several randomized algorithms that improve upon the state-of-the-art algorithms in terms of approximation ratio and time complexity, both under the non-adaptive setting and the adaptive setting. The empirical performance of our algorithms is extensively evaluated in several applications related to data mining and social computing, and the experimental results demonstrate the superiorities of our algorithms in terms of both utility and efficiency.
翻译:子模块优化有许多应用, 如众包和病毒营销。 在本文中, 我们研究非负性子模块功能最大化的根本问题, 受美元系统的制约, 这概括了子模块优化方面的许多其他重要限制, 如基质约束、 机器人约束和 美元可扩展系统约束。 解决这一问题的现有方法达到了基于确定性算法框架的最著名的近似比率 $+2\ sqrt{k+2 ⁇ 3 ( 用于一般子模块功能 ) 。 我们建议了几种随机化算法, 在非适应性环境以及适应性环境下, 在近似比和时间复杂性方面改进最新算法。 我们算法的经验性绩效在数据挖掘和社会计算的若干应用中得到了广泛评价, 实验结果显示了我们算法在实用性和效率方面的优异性。