Cox proportional hazards model is one of the most popular models in biomedical data analysis. There have been continuing efforts to improve the flexibility of such models for complex signal detection, for example, via additive functions. Nevertheless, the task to extend Cox additive models to accommodate high-dimensional data is nontrivial. When estimating additive functions, commonly used group sparse regularization may introduce excess smoothing shrinkage on additive functions, damaging predictive performance. Moreover, an "all-in-all-out" approach makes functional selection challenging to answer if nonlinear effects exist. We develop an additive Cox PH model to address these challenges in high-dimensional data analysis. Notably, we impose a novel spike-and-slab LASSO prior that motivates the bi-level functional selection on additive functions. A scalable and deterministic algorithm, EM-Coordinate Descent, is designed for scalable model fitting. We compare the predictive and computational performance against state-of-the-art models in simulation studies and metabolomics data analysis. The proposed model is broadly applicable to various fields of research, e.g. genomics and population health, via the freely available R package BHAM (https://boyiguo1.github.io/BHAM/).


翻译:Cox成比例危害模型是生物医学数据分析中最受欢迎的模型之一。我们一直在不断努力提高这类模型的灵活性,以便进行复杂的信号检测,例如通过添加功能。然而,扩大Cox添加模型以容纳高维数据的任务不是三维的。当估计添加功能时,通常使用的组稀释功能可能会对添加功能造成过度的平滑缩小,损害预测性能。此外,“万灵通”方法使得在非线性效应存在时难以作出功能选择。我们开发了一个添加式Cox PH模型,以便在高维数据分析中应对这些挑战。值得注意的是,我们在前一个新颖的加压和Slab LASSOS模型,激励对添加功能进行双级功能选择。一个可缩放和确定性算法,即EM-Cofrodlegle,是为可缩放的模型设计。我们比较模拟研究和代谢数据分析中的预测和计算性能与状态-艺术模型比较。拟议的模型广泛适用于各种研究领域,例如:genomomicmic/Mumabas/BAM。(通过可自由获得的Rammm/HAM)/Rabsiobsmassmass。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
A Computational Model for Logical Analysis of Data
Arxiv
0+阅读 · 2022年7月12日
A Federated Cox Model with Non-Proportional Hazards
Arxiv
0+阅读 · 2022年7月11日
Arxiv
0+阅读 · 2022年7月11日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员