Symbolic regression, i.e. predicting a function from the observation of its values, is well-known to be a challenging task. In this paper, we train Transformers to infer the function or recurrence relation underlying sequences of integers or floats, a typical task in human IQ tests which has hardly been tackled in the machine learning literature. We evaluate our integer model on a subset of OEIS sequences, and show that it outperforms built-in Mathematica functions for recurrence prediction. We also demonstrate that our float model is able to yield informative approximations of out-of-vocabulary functions and constants, e.g. $\operatorname{bessel0}(x)\approx \frac{\sin(x)+\cos(x)}{\sqrt{\pi x}}$ and $1.644934\approx \pi^2/6$. An interactive demonstration of our models is provided at https://bit.ly/3niE5FS.
翻译:符号回归, 即预测其值观测的函数, 众所周知, 是一项具有挑战性的任务。 在本文中, 我们训练变异器, 以推断整数或浮点的函数或复发关系, 这是人类智商测试中的一项典型任务, 在机器学习文献中几乎未处理过 。 我们用 OEIS 序列的一个子集来评估我们的整数模型, 并显示它优于数学中固有的复发预测功能 。 我们还表明, 我们的浮标模型能够产生 省外函数和常数的信息近似值, 例如 $\ operatorname{ besel0} (x)\ approx\ frac\ sin (x) ⁇ cos (x)\ sqrt=pi x $ 和 $16444934\ approx\ pi ⁇ 2/6$。 我们模型的互动演示见 https://bit.ly/3niE5FS。