Accurate and fast demand forecast is one of the hot topics in supply chain for enabling the precise execution of the corresponding downstream processes (inbound and outbound planning, inventory placement, network planning, etc). We develop three alternatives to tackle the problem of forecasting the customer sales at day/store/item level using deep learning techniques and the Corporaci\'on Favorita data set, published as part of a Kaggle competition. Our empirical results show how good performance can be achieved by using a simple sequence to sequence architecture with minimal data preprocessing effort. Additionally, we describe a training trick for making the model more time independent and hence improving generalization over time. The proposed solution achieves a RMSLE of around 0.54, which is competitive with other more specific solutions to the problem proposed in the Kaggle competition.
翻译:准确和快速需求预测是供应链中的一个热点议题,有助于准确执行相应的下游流程(入境和出境规划、库存安排、网络规划等),我们开发了三种备选方案,以解决利用深层学习技术和作为Kagle竞争的一部分出版的Corporaci\'on Favorita数据集在日/储存/项目一级预测客户销售情况的问题。我们的经验结果表明,如何通过使用简单的序列来排序结构结构,以最低限度的数据处理前工作来取得良好的业绩。此外,我们描述了使模型更加独立、从而随着时间的推移改进一般化的培训技巧。拟议解决方案实现了大约0.54的RUSLE,与卡格格尔竞争中所提出的问题的其他更具体的解决办法具有竞争力。