A motif is a frequently occurring subgraph of a given directed or undirected graph $G$. Motifs capture higher order organizational structure of $G$ beyond edge relationships, and, therefore, have found wide applications such as in graph clustering, community detection, and analysis of biological and physical networks to name a few. In these applications, the cut structure of motifs plays a crucial role as vertices are partitioned into clusters by cuts whose conductance is based on the number of instances of a particular motif, as opposed to just the number of edges, crossing the cuts. In this paper, we introduce the concept of a motif cut sparsifier. We show that one can compute in polynomial time a sparse weighted subgraph $G'$ with only $\widetilde{O}(n/\epsilon^2)$ edges such that for every cut, the weighted number of copies of $M$ crossing the cut in $G'$ is within a $1+\epsilon$ factor of the number of copies of $M$ crossing the cut in $G$, for every constant size motif $M$. Our work carefully combines the viewpoints of both graph sparsification and hypergraph sparsification. We sample edges which requires us to extend and strengthen the concept of cut sparsifiers introduced in the seminal work of to the motif setting. We adapt the importance sampling framework through the viewpoint of hypergraph sparsification by deriving the edge sampling probabilities from the strong connectivity values of a hypergraph whose hyperedges represent motif instances. Finally, an iterative sparsification primitive inspired by both viewpoints is used to reduce the number of edges in $G$ to nearly linear. In addition, we present a strong lower bound ruling out a similar result for sparsification with respect to induced occurrences of motifs.


翻译:motif 是给定方向或非方向的图形 $G$ 的经常出现的子集。 Motifs 捕获了更高层次的 $G$的组织结构, 超越边缘关系, 因此, 我们发现在图形组合、 社区检测、 生物和物理网络分析等应用中发现了一些广泛的应用。 在这些应用中, motifs 的切割结构起着关键的作用, 因为顶端被切除分割成集群, 而顶端的导线是根据某个 motif 的情况进行分解的, 而不是仅仅是边缘的数量, 跨过切割。 在此文件中, 我们引入了一个 motif 的更高层次组织结构结构结构结构, 并且我们引入了一个高层次结构结构的精度子集 G'$, 并且我们通过每个固定的深度框架 将一个低层次的精度的精度的精度的子集值 。 我们用高层次的精度结构的精度结构的精度 将一个精度的精度基的精度的精度的精度的精度的精度的精度的精度的精度结构的精度结构的精度 。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
60+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年6月8日
Arxiv
12+阅读 · 2018年1月28日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
60+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员