Adopting contextually appropriate, audience-tailored linguistic styles is critical to the success of user-centric language generation systems (e.g., chatbots, computer-aided writing, dialog systems). While existing approaches demonstrate textual style transfer with large volumes of parallel or non-parallel data, we argue that grounding style on audience-independent external factors is innately limiting for two reasons. First, it is difficult to collect large volumes of audience-specific stylistic data. Second, some stylistic objectives (e.g., persuasiveness, memorability, empathy) are hard to define without audience feedback. In this paper, we propose the novel task of style infusion - infusing the stylistic preferences of audiences in pretrained language generation models. Since humans are better at pairwise comparisons than direct scoring - i.e., is Sample-A more persuasive/polite/empathic than Sample-B - we leverage limited pairwise human judgments to bootstrap a style analysis model and augment our seed set of judgments. We then infuse the learned textual style in a GPT-2 based text generator while balancing fluency and style adoption. With quantitative and qualitative assessments, we show that our infusion approach can generate compelling stylized examples with generic text prompts. The code and data are accessible at https://github.com/CrowdDynamicsLab/StyleInfusion.
翻译:首先,很难收集大量针对受众的典型数据。第二,一些以用户为中心的语言生成系统(如聊天机、计算机辅助书写、对话系统)的成功与否至关重要。 虽然现有方法展示了文本风格的传输,并有大量平行或非平行数据,但我们认为,由于两个原因,以视对象独立的外部因素为根据的风格自然限制。第一,很难收集大量针对受众的典型数据。第二,有些典型目标(如说服力、记忆力、同情力)很难定义,而没有受众反馈。在本文件中,我们提出新颖的风格融合任务——在预先培训的语言生成模型中,将受众的典型偏好用于语言风格。由于人类比直接评分好得多,因此,抽样A比抽样B更具有说服力/政治性/同情性-我们利用有限的对口人判断来套套装一个风格分析模型,并增强我们的种子判断组合。我们随后在GPT-2版本中,我们用学习的文本风格,在GPT-II版本的文本中,我们用具有快速的文本模型来平衡。