Semantic segmentation in complex scenes relies not only on object appearance but also on object location and the surrounding environment. Nonetheless, it is difficult to model long-range context in the format of pairwise point correlations due to the huge computational cost for large-scale point clouds. In this paper, we propose using regions as the intermediate representation of point clouds instead of fine-grained points or voxels to reduce the computational burden. We introduce a novel Region-Enhanced Feature Learning Network (REFL-Net) that leverages region correlations to enhance point feature learning. We design a region-based feature enhancement (RFE) module, which consists of a Semantic-Spatial Region Extraction stage and a Region Dependency Modeling stage. In the first stage, the input points are grouped into a set of regions based on their semantic and spatial proximity. In the second stage, we explore inter-region semantic and spatial relationships by employing a self-attention block on region features and then fuse point features with the region features to obtain more discriminative representations. Our proposed RFE module is plug-and-play and can be integrated with common semantic segmentation backbones. We conduct extensive experiments on ScanNetV2 and S3DIS datasets and evaluate our RFE module with different segmentation backbones. Our REFL-Net achieves 1.8% mIoU gain on ScanNetV2 and 1.7% mIoU gain on S3DIS with negligible computational cost compared with backbone models. Both quantitative and qualitative results show the powerful long-range context modeling ability and strong generalization ability of our REFL-Net.
翻译:暂无翻译