Models with a large number of latent variables are often used to fully utilize the information in big or complex data. However, they can be difficult to estimate using standard approaches, and variational inference methods are a popular alternative. Key to the success of these is the selection of an approximation to the target density that is accurate, tractable and fast to calibrate using optimization methods. Most existing choices can be inaccurate or slow to calibrate when there are many latent variables. Here, we propose a family of tractable variational approximations that are more accurate and faster to calibrate for this case. It combines a parsimonious parametric approximation for the parameter posterior, with the exact conditional posterior of the latent variables. We derive a simplified expression for the re-parameterization gradient of the variational lower bound, which is the main ingredient of efficient optimization algorithms used to implement variational estimation. To do so only requires the ability to generate exactly or approximately from the conditional posterior of the latent variables, rather than to compute its density. We illustrate using two complex contemporary econometric examples. The first is a nonlinear multivariate state space model for U.S. macroeconomic variables. The second is a random coefficients tobit model applied to two million sales by 20,000 individuals in a large consumer panel from a marketing study. In both cases, we show that our approximating family is considerably more accurate than mean field or structured Gaussian approximations, and faster than Markov chain Monte Carlo. Last, we show how to implement data sub-sampling in variational inference for our approximation, which can lead to a further reduction in computation time. MATLAB code implementing the method for our examples is included in supplementary material.


翻译:含有大量潜在变量的模型往往被用来充分利用大或复杂数据中的信息。 但是, 使用标准方法很难估计, 变推法是一种受欢迎的替代方法。 成功的关键是选择精确、 可移动和快速校准的目标密度近似值, 使用优化方法。 大多数现有选择可能不准确或慢于校准, 如果存在很多潜在变量。 在此, 我们建议一组可移动的变差近似值, 更准确和更快地校准这个案例。 它可能很难使用标准方法来估计, 而变差推导法则是一个受欢迎的替代方法。 成功的关键是选择一个精确度近似近似近似值的近似值, 选择一个精确的近似值, 并且使用精确的精确的精确度近似近似近似值, 并且使用精确的隐含变量的精确值 。 我们从非线性多变差值模型到快速的变差度模型, 将一个随机性变差模型 用于U 20 000 的变差模型, 将一个随机性变差模型应用到我们 的变差模型, 将一个直径直径直径的变数模型 。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【2020新书】概率机器学习,附212页pdf与slides
专知会员服务
108+阅读 · 2020年11月12日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年6月10日
Arxiv
0+阅读 · 2021年6月8日
Arxiv
0+阅读 · 2021年6月6日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
VIP会员
相关资讯
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员