Statistical analysis of massive datasets very often implies expensive linear algebra operations with large dense matrices. Typical tasks are an estimation of unknown parameters of the underlying statistical model and prediction of missing values. We developed the H-MLE procedure, which solves these tasks. The unknown parameters can be estimated by maximizing the joint Gaussian log-likelihood function, which depends on a covariance matrix. To decrease high computational cost, we approximate the covariance matrix in the hierarchical (H-) matrix format. The H-matrix technique allows us to work with inhomogeneous covariance matrices and almost arbitrary locations. Especially, H-matrices can be applied in cases when the matrices under consideration are dense and unstructured. For validation purposes, we implemented three machine learning methods: the k-nearest neighbors (kNN), random forest, and deep neural network. The best results (for the given datasets) were obtained by the kNN method with three or seven neighbors depending on the dataset. The results computed with the H-MLE method were compared with the results obtained by the kNN method. The developed H-matrix code and all datasets are freely available online.


翻译:大型数据集的统计分析往往意味着使用大量密度基质进行昂贵的线性代数操作。典型的任务是估算基本统计模型的未知参数和对缺失值的预测。我们开发了H-MLE程序,解决了这些任务。未知参数可以通过尽量扩大Gausian 联合日志相似功能来估计,这取决于共变矩阵。为了降低高计算成本,我们以等级(H-) 矩阵格式比较了共变矩阵。H矩阵技术允许我们使用不相容的共变矩阵和几乎是任意的定位。特别是,在考虑中的矩阵密度和无结构的情况下,H矩阵可以应用。为了验证目的,我们采用了三种机器学习方法:K-earest邻居(kNNN)、随机森林和深神经网络。通过 kNN(给定数据集)方法获得的最佳结果是三个或七个邻居,取决于数据集。用H-MLE方法计算的结果与KNNT方法获得的结果是自由比较的。开发的Hmatrix和所有数据都是在线数据。

0
下载
关闭预览

相关内容

“知识神经元网络”KNN(Knowledge neural network)是一种以“神经元网络”模型 为基础的知识组织方法。 在“知识神经元网络”KNN 中,所谓的“知识”,是描述一个“知识”的文本,如一个网页、Word、PDF 文档等。
【干货书】机器学习速查手册,135页pdf
专知会员服务
121+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
75+阅读 · 2020年7月26日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
105+阅读 · 2020年5月3日
机器学习入门的经验与建议
专知会员服务
89+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
AAAI2020 图相关论文集
图与推荐
10+阅读 · 2020年7月15日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
13+阅读 · 2019年5月15日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年6月7日
Arxiv
0+阅读 · 2021年6月5日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
相关资讯
AAAI2020 图相关论文集
图与推荐
10+阅读 · 2020年7月15日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
13+阅读 · 2019年5月15日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员