Since modern anti-virus software mainly depends on a signature-based static analysis, they are not suitable for coping with the rapid increase in malware variants. Moreover, even worse, many vulnerabilities of operating systems enable attackers to evade such protection mechanisms. We, therefore, developed a thin and lightweight live-forensic hypervisor to create an additional protection layer under a conventional protection layer of operating systems with supporting ransomware detection using dynamic behavioral features. The developed live-forensic hypervisor collects low-level memory access patterns instead of high-level information such as process IDs and API calls that modern Virtual Machine Introspection techniques have employed. We then created the low-level memory access patterns dataset of three ransomware samples, one wiper malware sample, and four benign applications. We confirmed that our best machine learning classifier using only low-level memory access patterns achieved an $F_1$ score of 0.95 in detecting ransomware and wiper malware.
翻译:由于现代抗病毒软件主要依赖基于信号的静态分析,它们不适合应付恶意软件变异器的迅速增加,更糟糕的是,操作系统的许多弱点使攻击者能够逃避这种保护机制。因此,我们开发了一种薄的和轻量的现场防御超视仪,在常规的操作系统保护层之下创造额外的保护层,使用动态行为特征支持赎金软件的检测。开发的现场防御超视仪收集了低水平的存储访问模式,而不是诸如程序识别码和API等高级信息,而采用现代虚拟机器侵入技术。我们随后创建了三个赎金软件样本、一个擦拭器软件样本和四个良性应用程序的低级别存储访问模式数据集。我们确认,我们仅使用低级别记忆访问模式的最佳机器学习分类师在检测赎金软件和洗涤器恶意软件方面获得了0.95美元的分数,即0.95美元。