Decentralized finance (DeFi) is known for its unique mechanism design, which applies smart contracts to facilitate peer-to-peer transactions. The decentralized bank is a typical DeFi application. Ideally, a decentralized bank should be decentralized in the transaction. However, many recent studies have found that decentralized banks have not achieved a significant degree of decentralization. This research conducts a comparative study among mainstream decentralized banks. We apply core-periphery network features analysis using the transaction data from four decentralized banks, Liquity, Aave, MakerDao, and Compound. We extract six features and compare the banks' levels of decentralization cross-sectionally. According to the analysis results, we find that: 1) MakerDao and Compound are more decentralized in the transactions than Aave and Liquity. 2) Although decentralized banking transactions are supposed to be decentralized, the data show that four banks have primary external transaction core addresses such as Huobi, Coinbase, Binance, etc. We also discuss four design features that might affect network decentralization. Our research contributes to the literature at the interface of decentralized finance, financial technology (Fintech), and social network analysis and inspires future protocol designs to live up to the promise of decentralized finance for a truly peer-to-peer transaction network.


翻译:分散化金融(DeFi)因其独特的机制设计而闻名于其独特的分散化金融(DeFi),它运用智能合同促进同行之间的交易。分散化银行是典型的分散化银行应用。理想的是,分散化银行在交易中应该分散化。然而,最近许多研究发现,分散化银行没有实现相当程度的权力下放。这项研究在主流分散化银行中进行了比较研究。我们运用四个分散化银行、利库蒂、阿维、马克尔道和化合物的交易数据,进行核心――周边网络特征分析。我们提取了六个特征,并比较了银行分散化程度的跨部门应用。根据分析结果,我们发现:(1) MakerDao和Computer在交易中比亚韦和利库蒂更分散化。(2) 尽管分散化银行交易本应分散化,但数据显示,四家银行拥有主要外部交易核心地址,如Huobi、Coinbase、Binance等。我们还讨论了可能影响网络分散化的四个设计特征。我们的研究有助于在分散化金融、金融技术(Fintech)以及社会网络的文献界面中进行动态的文献,并激励未来协议设计。

0
下载
关闭预览

相关内容

专知会员服务
39+阅读 · 2020年9月6日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年2月13日
Arxiv
25+阅读 · 2022年1月3日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员