We give a formula for the determinant of an $n\times n$ matrix with entries from a commutative ring with unit. The formula can be evaluated by a "straight-line program" performing only additions, subtractions and multiplications of ring elements; in particular it requires no divisions or conditional branching (as are required, for example, by Gaussian elimination). The number of operations performed is bounded by a fixed power of $n$, specifically $O(n^4\log n)$. Furthermore, the operations can be partitioned into "stages" in such a way that the operands of the operations in a given stage are either matrix entries or the results of operations in earlier stages, and the number of stages is bounded by a fixed power of the logarithm of $n$, specifically $O\big((\log n)^2\big)$.
翻译:我们给出一个公式,用于确定 $n_times n$ 矩阵的决定因素, 其条目来自使用单位的移动环。 公式可以通过一个“ 直线程序” 来评估, 该公式只执行环元素的增量、减量和倍增; 特别是它不需要分割或有条件的分支( 例如, 需要取消高山) 。 完成的操作数量受美元固定功率( 具体为 O_ 4\ log n) 的约束。 此外, 操作可以分割成“ 阶梯 ”, 其方式是, 特定阶段的操作的运行要么是矩阵条目, 要么是早期操作的结果, 各个阶段的数量受美元对数( 具体为 $O\ big ( log n) =2\ big) 固定功率的约束 。