Computer-using agents (CUAs) enable task completion through natural interaction with operating systems and software interfaces. While script-based verifiers are widely adopted for evaluation, they suffer from limited scalability and inability to provide step-wise assessment. Reward models offer promising alternatives, but their effectiveness on CUA evaluation remains largely underexplored. To address this gap, we present CUARewardBench, comprising four key contributions: (1) First-ever Comprehensive CUA Reward Benchmark: We introduce the first benchmark for evaluating both outcome reward models (ORM) and process reward models (PRM) on CUA tasks, enabling systematic assessment across trajectory-level and step-level evaluation. (2) Diverse, Practical and Reliable Dataset: CUARewardBench encompasses trajectories from 10 software categories and 7 agent architectures with varying performance levels (25.9%-50.8% success rates). All trajectories are expertly annotated through carefully designed protocols, with rigorous quality control to ensure reliability and practical applicability. (3) Comprehensive Analysis and Insights: Through extensive experiments across 7 vision-language models and 3 prompt templates, we reveal critical limitations of current CUA RMs, including insufficient visual reasoning capabilities, knowledge deficiencies, and the superiority of general VLMs over specialized CUA models for reward evaluation. (4) Unanimous Prompt Ensemble (UPE): Based on the insights from our comprehensive analysis, we propose UPE, a novel ensemble method that significantly enhances reward model reliability through strict unanimous voting and strategic prompt-template configurations. UPE achieves 89.8% precision and 93.3% NPV for ORM, and 81.7% precision and 85.1% NPV for PRM, substantially outperforming single VLMs and traditional ensemble approaches.
翻译:暂无翻译