The construction of minimum spanning trees (MSTs) from correlation matrices is an often used method to study relationships in the financial markets. However most of the work on this topic tends to use the Pearson correlation coefficient, which relies on the assumption of normality and can be brittle to the presence of outliers, neither of which is ideal for the study of financial returns. In this paper we study the inference of MSTs from daily US, UK and German financial returns using Pearson and two rank correlation methods, Spearman and Kendall's $\tau$. MSTs constructed using these rank methods tend to be more stable and maintain more edges over the dataset than those constructed using Pearson correlation. The edge agreement between the Pearson and rank MSTs varies significantly depending on the state of the markets, but the rank MSTs generally show strong agreement at all times. Deviation from univariate normality can be related to changes in the correlation matrices but is more difficult to connect to changes in the MSTs. Irrelevant of coefficient, the trees tend to have similar topologies. Portfolios constructed from the MST correlation matrices have a smaller turnover than those from the full covariance matrix for the larger markets, but not for the smaller German market. Using a bootstrap method we find that the correlation matrices constructed using the rank correlations are more robust, but there is little difference between the robustness of the MSTs.


翻译:从相关矩阵中构建最小横跨树( MSTs) 是研究金融市场关系的一种常用方法。 但是,关于这个主题的大部分工作倾向于使用Pearson相关系数,该系数依赖于正常度的假设,并且可能不利于外部线的存在,而后者对于金融回报的研究来说既不理想。 在本文中,我们研究MSTs从日常美国、英国和德国金融回报的推论,使用Pearson和两个等级相关方法,Spearman和Kendall的美元。使用这些等级方法构建的MSTs往往更加稳定,比使用Pearson相关系数构建的数据集的偏差更大。Pearson和MSTs排名之间的边际协议因市场状况不同而大不相同,但MST的等级通常显示强烈的一致。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
123+阅读 · 2020年9月8日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
108+阅读 · 2020年6月10日
【Manning新书】现代Java实战,592页pdf
专知会员服务
99+阅读 · 2020年5月22日
【NeurIPS 2019的主要趋势】Key trends from NeurIPS 2019
专知会员服务
11+阅读 · 2019年12月19日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年1月14日
Arxiv
9+阅读 · 2018年3月10日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
123+阅读 · 2020年9月8日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
108+阅读 · 2020年6月10日
【Manning新书】现代Java实战,592页pdf
专知会员服务
99+阅读 · 2020年5月22日
【NeurIPS 2019的主要趋势】Key trends from NeurIPS 2019
专知会员服务
11+阅读 · 2019年12月19日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员