In 1952, Dirac proved the following theorem about long cycles in graphs with large minimum vertex degrees: Every $n$-vertex $2$-connected graph $G$ with minimum vertex degree $\delta\geq 2$ contains a cycle with at least $\min\{2\delta,n\}$ vertices. In particular, if $\delta\geq n/2$, then $G$ is Hamiltonian. The proof of Dirac's theorem is constructive, and it yields an algorithm computing the corresponding cycle in polynomial time. The combinatorial bound of Dirac's theorem is tight in the following sense. There are 2-connected graphs that do not contain cycles of length more than $2\delta+1$. Also, there are non-Hamiltonian graphs with all vertices but one of degree at least $n/2$. This prompts naturally to the following algorithmic questions. For $k\geq 1$, (A) How difficult is to decide whether a 2-connected graph contains a cycle of length at least $\min\{2\delta+k,n\}$? (B) How difficult is to decide whether a graph $G$ is Hamiltonian, when at least $n - k$ vertices of $G$ are of degrees at least $n/2-k$? The first question was asked by Fomin, Golovach, Lokshtanov, Panolan, Saurabh, and Zehavi. The second question is due to Jansen, Kozma, and Nederlof. Even for a very special case of $k=1$, the existence of a polynomial-time algorithm deciding whether $G$ contains a cycle of length at least $\min\{2\delta+1,n\}$ was open. We resolve both questions by proving the following algorithmic generalization of Dirac's theorem: If all but $k$ vertices of a $2$-connected graph $G$ are of degree at least $\delta$, then deciding whether $G$ has a cycle of length at least $\min\{2\delta +k, n\}$ can be done in time $2^{\mathcal{O}(k)}\cdot n^{\mathcal{O}(1)}$. The proof of the algorithmic generalization of Dirac's theorem builds on new graph-theoretical results that are interesting on their own.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年5月18日
Arxiv
0+阅读 · 2024年5月13日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员